Real World Cost-Effectiveness of Cancer Drugs:
Comparative effectiveness research using retrospective Canadian registry data before and after drug approval

Sara Khor, MASc
Pharmacoeconomics Research Unit, Cancer Care Ontario
Li Ka Shing Knowledge Institute, St. Michael’s Hospital
Canadian Centre for Applied Research in Cancer Control

May 23rd, 2011
ISPOR 16th Annual International Meeting
Acknowledgements

- Ministry of Health Drug Innovation Fund

- Dr. Jeffrey Hoch
- Dr. Murray Krahn
- Dr. David Hodgson
- Dr. Jin Luo
- Karen Bremner
- Dr. Linda Lee
- Dr. Michael Crump

- Dr. Chaim Bell
- Scott Gavura
- Dr. Paul Grootendorst
- Dr. Muhammad Mamdani
- Dr. Stuart Peacock
- Dr. Carol Sawka
- Dr. Terry Sullivan
- Dr. Maureen Trudeau
Outline

Overview & Objectives

Rituximab Study
 • Cohort Selection
 • Survival
 • Costs
 • Cost-effectiveness

Conclusion
The need of evidence-based data in CER

Healthcare payers, providers, pharmaceutical manufacturers rely on the use of evidence-based data to evaluate the effectiveness and "value for money" of innovative therapies relative to current standard-of-care practices.
Evidence to evaluate clinical outcomes

- Randomized controlled trials is the golden standard:
 - Challenging to conduct
 - Costly, require a lot resources, restricted to short time frames
 - Might not reflect the real-world
 - Selected group of patients, specific procedures, ethical issues
 - Might not reflect how the drug is used in practice
 - Toxicities/side effects may not be determined
Why real-world cost-effectiveness analysis?

- Accurate information about how a drug is actually used or how much it actually costs is only available after a drug is funded.

- Allows us to evaluate real benefits or harms and value for money of new agents, especially expensive ones.
Our study

- First study in Ontario that evaluates population-based post-market effectiveness and cost-effectiveness of very expensive cancer drugs

- First study in Canada incorporating recently developed statistical methods for analyzing incomplete costs and cost-effectiveness of cancer treatments
Overall Objectives

- To determine whether it is feasible to conduct post-market evaluation of cancer drugs using Ontario’s administrative databases.

- To compare survival benefits and costs from the real-world to what is being reported in RCTs and economic models.
Real-world outcomes

Population-based retrospective analysis of cancer drugs

Patterns of Care:
Who used these drugs and how?

Clinical Outcomes:
Did the drugs improve survival?
Were they safe?

Direct Costs:
How much did Ontario spend?

Cost-effectiveness:
What was the real added value for each extra dollar spent?
Outline

Overview & Objectives

Rituximab Study
- Cohort Selection
- Survival
- Costs
- Cost-effectiveness

Conclusion
Diffuse-large-B-cell lymphoma

- 3000 new cases of non-Hodgkin lymphoma in Ontario in 2010
- 1300 deaths attributed to the disease
- Diffuse-large-B-cell lymphoma is the most common form, represents approx. 25% of new cases

- Standard treatment: CHOP*
- New treatment: Rituximab + CHOP (RCHOP)

* cyclophosphamide, doxorubicin, vincristine and prednisone
In Ontario

- Rituximab approved for funding via the New Drug Funding Program in Ontario:
 - Jan 10th, 2001 – 60-80 years old
 - April 2nd, 2001 – ≥80 years old
 - July 1st, 2004 – <60 years old

- Based on efficacy results from out-of-province trials and theoretical economic models
Outline

Overview & Objectives

Rituximab Study
- Cohort Selection
- Survival
- Costs
- Cost-effectiveness

Conclusion
Historical cohort selection

Pre-era CHOP

Jan, 1997

<60

≥80

60-80

Jan, 2001

April, 2001

July, 2004

Dec 31, 2007

Mar 31, 2009

Post-era RCHOP
Characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Pre-era CHOP</th>
<th>Post-era RCHOP</th>
<th>Std. diff</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N = 1196</td>
<td>N = 2825</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Before matching

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Mean ± SD</th>
<th>N = 1196</th>
<th>N = 2825</th>
<th>Std. diff</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age Mean ± SD</td>
<td>56.7 ± 16</td>
<td>65.5 ± 14</td>
<td>0.62</td>
<td><.001</td>
<td></td>
</tr>
<tr>
<td>Age Group</td>
<td>0-19</td>
<td>1%</td>
<td><1%</td>
<td>0.09</td>
<td><.001</td>
</tr>
<tr>
<td></td>
<td>20-59</td>
<td>56%</td>
<td>25%</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60-69</td>
<td>19%</td>
<td>30%</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>70-79</td>
<td>20%</td>
<td>33%</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80+</td>
<td>5%</td>
<td>12%</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>47%</td>
<td>48%</td>
<td>0.01</td>
<td>0.74</td>
<td></td>
</tr>
<tr>
<td>ACG* Group</td>
<td>0</td>
<td><1%</td>
<td><1%</td>
<td>0.09</td>
<td><.001</td>
</tr>
<tr>
<td></td>
<td>1-3</td>
<td>7%</td>
<td>5%</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-6</td>
<td>24%</td>
<td>17%</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7-9</td>
<td>28%</td>
<td>31%</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10+</td>
<td>40%</td>
<td>47%</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>Income Quintile</td>
<td>1</td>
<td>16%</td>
<td>17%</td>
<td>0.02</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>20%</td>
<td>21%</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>20%</td>
<td>19%</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>24%</td>
<td>21%</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>20%</td>
<td>22%</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td></td>
<td>missing</td>
<td><1%</td>
<td><1%</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Treatment intensity</td>
<td>Low</td>
<td>32%</td>
<td>30%</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>54%</td>
<td>58%</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unclassifiable</td>
<td>15%</td>
<td>12%</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>Primary Histology Code</td>
<td>9590</td>
<td>16%</td>
<td>20%</td>
<td>0.11</td>
<td><.001</td>
</tr>
<tr>
<td></td>
<td>9591</td>
<td>3%</td>
<td>3%</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9640</td>
<td>80%</td>
<td>69%</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9680</td>
<td>2%</td>
<td>9%</td>
<td>0.29</td>
<td></td>
</tr>
</tbody>
</table>

*ACG – adjusted clinical group scores

- **Hard-matched on age group**
- **Propensity score-matched on:**
 - Sex
 - Adjusted clinical group (ACG) score
 - Income quintile
 - Treatment intensity
 - Primary histology diagnosis code
<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Before matching</th>
<th>After matching</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre-era CHOP</td>
<td>Post-era RCHOP</td>
</tr>
<tr>
<td></td>
<td>N = 1196</td>
<td>N = 2825</td>
</tr>
<tr>
<td>Age Mean ± SD</td>
<td>56.7± 16</td>
<td>65.5 ± 14</td>
</tr>
<tr>
<td>0-19</td>
<td>1%</td>
<td><1%</td>
</tr>
<tr>
<td>20-59</td>
<td>56%</td>
<td>25%</td>
</tr>
<tr>
<td>60-69</td>
<td>19%</td>
<td>30%</td>
</tr>
<tr>
<td>70-79</td>
<td>20%</td>
<td>33%</td>
</tr>
<tr>
<td>80+</td>
<td>5%</td>
<td>12%</td>
</tr>
<tr>
<td>Age Group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>47%</td>
<td>48%</td>
</tr>
<tr>
<td>ACG Group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td><1%</td>
<td><1%</td>
</tr>
<tr>
<td>1-3</td>
<td>7%</td>
<td>5%</td>
</tr>
<tr>
<td>4-6</td>
<td>24%</td>
<td>17%</td>
</tr>
<tr>
<td>7-9</td>
<td>28%</td>
<td>31%</td>
</tr>
<tr>
<td>10+</td>
<td>40%</td>
<td>47%</td>
</tr>
<tr>
<td>Income Quintile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>16%</td>
<td>17%</td>
</tr>
<tr>
<td>2</td>
<td>20%</td>
<td>21%</td>
</tr>
<tr>
<td>3</td>
<td>20%</td>
<td>19%</td>
</tr>
<tr>
<td>4</td>
<td>24%</td>
<td>21%</td>
</tr>
<tr>
<td>5</td>
<td>20%</td>
<td>22%</td>
</tr>
<tr>
<td>missing</td>
<td><1%</td>
<td><1%</td>
</tr>
<tr>
<td>Treatment intensity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>32%</td>
<td>30%</td>
</tr>
<tr>
<td>High</td>
<td>54%</td>
<td>58%</td>
</tr>
<tr>
<td>Unclassifiable</td>
<td>15%</td>
<td>12%</td>
</tr>
<tr>
<td>Primary Histology Code</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9590</td>
<td>16%</td>
<td>20%</td>
</tr>
<tr>
<td>9591</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>9640</td>
<td>80%</td>
<td>69%</td>
</tr>
<tr>
<td>9680</td>
<td>2%</td>
<td>9%</td>
</tr>
</tbody>
</table>
Kaplan-Meier Survival Curves

Survival Curves after matching

- Pre-era CHOP
- Post-era RCHOP

3-year: 10%↑
5-year: 8%↑

p<0.001
Outline

Overview & Objectives

Rituximab Study
- Cohort Selection
- Survival
- Costs
- Cost-effectiveness

Conclusion
Cost analysis

- Perspective: Payer – Ministry of Health

- Adjusted for incomplete cost data (due to not enough follow-up time) by using Bang and Tsiatis’ estimator (2000)

- Fixed time-frames: 3-year and 5-year

- Discounted by 3%
5-year costs

- **CHOP**
 - Unadjusted: $71,639
 - Adjusted: $71,640

- **RCHOP**
 - Unadjusted: $79,668
 - Adjusted: $88,536

The graph shows the total healthcare cost for 5 years, comparing CHOP and RCHOP treatments. The adjusted costs are slightly higher than the unadjusted costs.
Cost drivers

All ages cost (censor adjusted and discounted)
Outline

Overview & Objectives

Rituximab Study

- Cohort Selection
- Survival
- Costs
- Cost-effectiveness

Conclusion
Incremental Cost-effectiveness Ratios

<table>
<thead>
<tr>
<th>Year</th>
<th>Incremental cost (CAD$)</th>
<th>Incremental survival (Years)</th>
<th>ICER ($/LYG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 year</td>
<td>15,032</td>
<td>0.16</td>
<td>96,764</td>
</tr>
<tr>
<td>5 year</td>
<td>16,785</td>
<td>0.33</td>
<td>51,587</td>
</tr>
</tbody>
</table>

3% discounted
Cost-effectiveness acceptability curve

Bootstrap ICERs vs WTP

Percentage

Willingness-to-pay ($/LYG)

0 50000 100000 150000 200000 250000

0 20 40 60 80 100

23% 92% 99.7% 91%
Outline

Overview & Objectives

Rituximab Study

• Cohort Selection
• Survival
• Costs
• Cost-effectiveness

Conclusion
How do we compare?

2-year Absolute Survival Benefit

- **Our study**: 8
- **Europe GELA Trial**: 13
- **BC observational study**: 26
How do we compare?

- **Our study**: 16,785
- **US model**: 12,740
- **BC microsimulation (High)**: 9,700
- **BC microsimulation (Low)**: 7,900

5-yr Incremental Cost

Cost ($)

0 5000 10000 15000 20000
Key methodological findings

- Using appropriate methods to adjust for confounding variables is important
- Adjusting for incomplete cost data is essential
- Selection of timeframe has a big effect on cost-effectiveness results
Overall Conclusions

- It is feasible to perform real-world cost-effectiveness analysis with Ontario’s administrative data.

- Cost-effectiveness results in a real-world analysis differ from those from clinical trials and economic models.

- Healthcare payers, providers and pharmaceutical manufacturers should be cautious about conclusions from results of trials/models.
Thank you

Contact us:

Sara Khor
Email: sara.khor@cancercare.on.ca

Websites:
http://healtheconomics.utoronto.ca
http://www.cc-arcc.ca